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Experimental evidence is needed to verify the hypothesis that the memory of initial
conditions is retained at late times in variable density flows. If true, this presents an
opportunity to “design” and “control” late-time turbulence, with an improved under-
standing in the prediction of inertial confinement fusion and other general fluid mixing
processes. In this communication, an experimental and theoretical study on the effects
of initial condition parameters, namely, the amplitude δ0 and wavenumber κ0 (κ0 = 2π

λ0
,

where λ0 is the initial wavelength) of perturbations, on late-time turbulence and mix-
ing in shock-driven Richtmyer–Meshkov (R-M) unstable fluid layers in a 2D plane is
presented. Single and multi-mode membrane-free initial conditions in the form of a gas
curtain having a light-heavy-light configuration (air-SF6-air) with an Atwood number
of A = 0.57 were used in our experiments. A planar shock wave with a shock Mach
number M = 1.21 drives the R-M instability, and the evolution of this instability after
incident shock is captured using high resolution simultaneous planar laser induced flu-
orescence (PLIF) and particle image velocimetry (PIV) diagnostics. Time evolution of
statistics such as amplitude of the mixing layer, 2D turbulent kinetic energy, Reynolds
number, rms of velocity fluctuations, probability density functions, and density-specific
volume correlation were observed to quantify the amount of mixing and understand
the nature of turbulence in this flow. Based on these results, it was found that the R-M
mixing layer is asymmetric and non-Boussinesq. There is a correlation between initial
condition parameters and large-scale, and small-scale mixing at late times, indicating
an initial condition dependence on R-M mixing.

Keywords: initial conditions; Richtmyer–Meshkov instability; turbulent mixing

1. Introduction

The Richtmyer–Meshkov (R-M) instability is produced when a shock wave interacts with an
interface separating two gases of varying density. During this process, vorticity is deposited
at the interface by means of baroclinic torque (∇p × ∇ρ) caused by the misalignment of
the pressure gradient of the shock and the density gradient at the initial conditions [1,2]. The
rotational flow associated with this vorticity causes the interface to distort strongly in areas
of maximum misalignment, forming flow structures comprised of bubbles of light fluid and
spikes of heavy fluid. The R-M instability can be thought of as the impulsive limit of a
Rayleigh–Taylor (R-T) instability [3]. The analysis of [1] revealed that small perturbations
in the initial interface grow linearly with time, and other work such as [4] suggests that even
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when the perturbation is nonlinearly saturated, the growth continues to be linear in time. The
physics of R-M instability has important implications in inertial confinement fusion, where
a spherical capsule containing solid Deuterium–Tritium (D-T) and an inner space filled
with gaseous D-T is compressed using powerful lasers [e.g., 5–7]. The imploding shock
wave interacts with a variable density field caused by the large density difference between
the solid and gaseous D-T, resulting in the R-M instability and growth of initially present
small-scale random perturbations. During the implosion, R-M instability triggers turbulent
mixing, which has the dual effect of diluting and cooling the fuel, reducing the efficiency of
the reaction [8] and making it important to understand this mechanism. Other applications of
this work include astrophysical phenomena, from supernovae to the dynamics of interstellar
media, combustion processes, and mixing in scram jet engines and physics of ejecta [see
9–12]. In variable density flows, the density interface consists of random perturbations
arising from surface roughness, machining grooves, or often an uneven fluid interface that
initially grows in a laminar, orderly manner, and later becomes turbulent and nonlinear,
thereby greatly enhancing the mixing of the two fluids. The gradients in the initial conditions
strongly impact the energy deposited in the interface when a shock wave passes through
it, and hence it is critical to quantify the initial condition dependence on flow mixing. The
primary focus of this paper is to quantitatively study the influence of initial conditions on
the development of a turbulent mixing layer due to R-M instability.

1.1. Background and motivation for the present study

In the past four decades, the growth and mixing characteristics of Richtmyer–Meshkov
instability have been studied experimentally, theoretically, and numerically by various re-
search groups [e.g., 13–36], yet some issues remain. For example, experimental diagnostics
have not been able to accurately measure turbulence statistics until recently [37], so the ex-
act nature of turbulence and mixing behavior over time under different flow conditions has
been unknown. Moreover, no turbulence quantities have been experimentally measured in
singly shocked R-M flows, and this information is important for theoretical and numerical
validation of unsteady flows.

1.1.1. Theoretical work

Linear theory has been applied to study the growth of the mixing layer in R-M flows. For
positive post-shock Atwood number (A+ > 0) the growth can be represented as

dδ

dt
= A+�Uκδ+

0 , (1)

where �U is the advection velocity, κ is the wavenumber of perturbations at the interface,
and δ+

0 is the post-shock amplitude of the perturbations. In Equation (1), the post-shock
Atwood number and shock amplitude are used to capture shock compression effects. Later
it was found that Equation (1) is applicable for pre-shock Atwood numbers A > 0. For
A < 0, the growth rate depends on the average of the pre-shock amplitude (δ0) and post-
shock amplitude (δ+

0 ), namely, [38]

dδ

dt
= A�Uκ

(
δ+

0 + δ0

2

)
. (2)
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The linear theory proposed by [1] is limited to application at small amplitudes (κδ0 � 1)
and when the growth rate is small. It is also limited to the regime of small compressions,
when the incident Mach number is near unity or the adiabatic indices are large. The theory
loses accuracy for strong shocks when the densities or adiabatic indices differ substantially.
Another analytical model was proposed by [39] , which is based on the assumption that the
vorticity created by the initial shock interaction evolves into a row of line vortices. This
model was validated experimentally for single-mode perturbations [40]. An exact solution
in the linear regime was given by Wouchuk and Nishihara [41]. Despite these theoretical
efforts, due to the nonlinearity of shock-driven mixing, experiments with accurately mea-
sured initial conditions and temporally and spatially resolved mixing parameters are needed
to help guide our understanding of these flows.

1.1.2. Experimental work

In experiments, to study R-M instability with or without reshock, an initial interface can be
created either using membranes [17,18,42], or without membranes [23,30,43,44]. Although
a variety of initial conditions can be used in experiments with membranes, small pieces of
wire and diaphragm contaminate the flow field, causing unknown effects to the flow as well
as interfering with optical diagnostics. Experiments with membrane-free initial conditions
allow for high resolution measurements, but the interface is diffuse, and repeatability and
characterization of initial conditions is difficult. Thus, experimental measurements in R-M
flows, especially quantitative data, are very difficult, most notably in the cases involving
inertial confinement fusion and astrophysical phenomena.

1.1.3. Numerical work

Due to the difficulties associated with theoretical and experimental study of R-M flows, an
understanding of the underlying flow physics relies on insights gained through modeling and
numerical simulations [see 31,45–48]. The evolution of R-M instability with single-mode
initial conditions has been studied extensively, and recently some progress has been made
on understanding the effects of the multi-mode nature of perturbations on R-M growth
and mixing [49–52]. However, for accurate modeling of such complex flows, experimental
measurements are necessary for the verification and validation of the numerical models.
Hence, for a complete understanding of the physics of unsteady variable density mixing, it is
important to approach the problem from all the three aspects, namely theoretical modeling,
experimental measurements, and numerical modeling.

1.2. Initial condition effects

Historically it was thought that both R-T and R-M turbulence reach an isotropic state
at late times and the flows become independent of the initial perturbations and are con-
trolled only by the local small scales present in the flow [26,53]. However, recently there
is a growing body of fundamental research that indicates only some turbulent flows are
truly self-similar, and one may have to consider the influence of initial conditions on late-
time flow development [see 15,54,55]. A number of studies, mostly computational, have
focused on the influence of initial conditions on R-T instability [16,55,56] and R-M insta-
bility [11,31,51,57]. The lack of experimental evidence of the effect of initial conditions
on late time turbulent mixing has been a bane to the verification and validation of various
2D and 3D numerical models. The difficulty in diagnosing turbulent mixing quantities in
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Figure 1. Schematic of the horizontal shock tube facility at Los Alamos National Laboratory. There
are four pressure transducers (PT) to measure the shock speed, and lasers and cameras to perform
PLIF and PIV measurements.

extreme conditions, such as a shock driven unsteady flow, makes experimental observation
a challenging task, and there are only a handful of experimental results indicating a weak
initial condition dependence on late time mixing in R-M flows both in the absence and
presence of reshock [42,44,58,59]. In order to understand the effects of initial conditions
on the late-time R-M mixing and turbulence, and to improve our methods for modeling
unsteady turbulence, it is of utmost importance to experimentally measure the evolution
of multiple turbulence statistics. The scope of this paper is to study the impact of dif-
ferent initial configurations on turbulent kinetic energy, velocity fluctuations, and other
turbulence quantities. The rest of the paper is organized as follows: Section 2 presents the
experimental setup and initial conditions characterization. Section 3 describes the single
shock experiments using different initial condition configurations followed by results of
turbulent quantities measured. The conclusions of this study are presented in Section 4.

2. Experimental setup and instrumentation

In this section, the details of the experimental facility along with the description of our high
resolution diagnostics used for measurements and the characteristics of membrane-free
stable initial conditions are given.

2.1. LANL horizontal gas shock tube facility

The experiments were carried out in the Horizontal Shock Tube facility at Los Alamos
National Laboratory shown in Figure 1. In order to generate a shock wave, the driver
section is pressurized using nitrogen as the driver gas. Once the desired pressure is reached,
the diaphragm is ruptured with blades to send a shock wave downstream. For the reported
experiments, a Mach M = 1.21 shock wave is generated within a 7.62 × 7.62 cm square
cross-section tube spanning a total length of approximately 5.31 m [for more information
on the experimental setup, see 35,43]. The shock wave travels a distance of x ≈ 3.3 m
before entering a 45 cm long test section. The initial condition in the form of a gas curtain
is created inside this test section. To form the gas curtain, a mixture of SF6 and acetone
is flowed into a settling chamber. The mixture then flows into the test section through a
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Figure 2. (left) A sample image of the nozzle configuration (manufactured using stereo-lithography)
used to create the gas curtain. (right) The view of the flowing gas curtain along the stream-wise (x)
direction. By changing the nozzle design the initial conditions can be changed accordingly.

nozzle whose primary amplitude (δ0) and wavelength (λ0) of perturbation are specified by
the nozzle shape (see Figure 2). The heavy SF6 gas inside the test section is surrounded on
both sides by air, thus creating a light-heavy-light interface. The diffusive and convective
processes together act to create a layer containing initial perturbations on both interfaces.
Different nozzle configurations can be used to change the nature of the initial conditions.
The pre-shock Atwood number defined as A = (ρ2−ρ1)

(ρ2+ρ1) is A = 0.57, at a plane z = 20 mm
below the nozzle. Here, ρ2 is the density of SF6 and acetone mixture and ρ1 is the density
of air. The Atwood number value reported here is lower than that for a pure SF6, air
interface, due to the consideration of acetone that is used as a tracer for PLIF diagnostic.
In order to maintain a stable and steady flow, the heavy gas exits through a rectangular
plenum attached to the bottom wall of the test section that is maintained at a small negative
pressure just sufficient to remove all of the flowing gas. The stable initial conditions are
impinged upon by a M = 1.21 shock wave to trigger the R-M instability and study the
subsequent growth. The ambient conditions of the laboratory are pressure, Patm = 0.79
bar, temperature, T = 25◦C, speed of sound in air, a = 346.65 m·s−1, and the advection
velocity of the interface after shock, �U = 101.7 m·s−1. The following convention is used
to define the direction of flow: x is the streamwise or shock direction, y is the spanwise or
shock normal direction, and z is the vertical direction.

2.2. Experimental diagnostics

Measurements of the initial conditions and the dynamic flow are performed using planar
laser induced fluorescence (PLIF) and particle image velocimetry (PIV) diagnostics that
yield simultaneous 2D velocity-density field measurements in the x-y plane. Two dual-head,
frequency-quadrupled, and frequency-doubled Nd:YAG lasers operating at wavelengths of
266 nm and 532 nm are used for PLIF and PIV measurements, respectively. Both laser
beams are shaped into a thin light sheet of thickness ≤1.2 mm. The density and velocity
measurements were performed at a plane z = 20 mm below the nozzle exit. The SF6

gas is uniformly mixed with acetone vapor for PLIF measurements. The acetone vapor is
generated by bubbling SF6 through liquid acetone kept in a temperature controlled bath
set at 20◦C. The light from the PLIF laser is used to induce fluorescence of the acetone
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present in the SF6. The evolving flow field after shock is captured using high sensitivity
charged coupled device (CCD) cameras. The PLIF resolution is 50.5 µm/pixel. The intensity
calibration of the PLIF images, required for quantitative density fields, is performed using
a calibration test cell. The calibration process is done before and after the experiments to
accurately calculate the concentration of SF6. This concentration value is used as a baseline
for calculating concentration at different times assuming conservation of mass within the
measurement plane.

For PIV, the flow is uniformly seeded with 0.5 µm mean diameter glycol particles
(mixed with SF6 using a fog machine placed in the settling chamber) and the light scattered
off these particles is imaged by a Kodak Megaplus-ES camera. The PLIF signal due to
the fluorescence is removed by a Raman notch filter attached to the front of the lens. To
obtain the velocity field two PIV images are separated by a time interval of �t = 2 µs. The
PIV vectors are then obtained by cross correlating the raw images using the commercial
software INSIGHT 3G. A correlation window size of 32 × 32 pixels is used with suitable
offsets for interrogations. A 50% overlap of the windows and a Gaussian smoothing over a
3 × 3 neighborhood of the interrogated field are employed to increase the spatial resolution
of the measurement, and to reduce the amount of bad vectors. The PIV spatial resolution is
16.0 µm/pixel, and the vector to vector spacing is 256 µm.

2.3. Initial condition configurations

In order to understand the dependence of amplitude and wavelength of initial conditions
on the R-M instability evolution and mixing, a dimensionless parameter representing the
initial interfacial morphology can be defined [see 52,60] as follows:

κ0δ0 =
⎛
⎝
√

∇ρ
′∇ρ

′

ρ
′
ρ

′

⎞
⎠ δ0. (3)

In Equation (3), δ0 and κ0 are the initial amplitude and wave number of perturbations, and ρ
′

is the density fluctuations across the interface. This metric has been used previously in R-M
flows to scale the time [35,58], and has also been used to study initial condition dependence
on mixing [44]. Mathematically, κ0 is also referred to as the zero-crossing wavenumber that
is an indicator of the spectral frequency modes present within the interface [60].

In variable density flows, κ0 is usually computed by counting the number of times the
interface crosses the zero value, N c, which is also equivalent to sign changes of mass
density fluctuation along the spanwise (y) direction. The initial wavelength of the interface
is related to the number of zero crossings, N c, as λ0 = Ly

N c/2 = 2Ly

N c
, where Ly is the total

domain length in the spanwise direction. We also know that the initial wavenumber of the
interface is given by κ0 = 2π

λ0
, so

κ0 = πN c

Ly
. (4)

The value of κ0 is experimentally measured by counting N c over a spanwise length, Ly at a
line going through the center of mass of the fluid interface. Physically the parameter, κ0δ0,
can also be construed as a measure of the rms slope of an interface; thus a higher value
represents a more complex and corrugated initial interface. This is an important parameter
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Table 1. Experimental initial condition parameters.

Initial condition δ0 (mm) λ0 (mm) κ0 (mm−1) κ0δ0

Short λ mode (IC 1) 3 3.6 1.744 5.23
Long λ mode (IC 2) 3 7.2 0.872 2.62
Multi-modea(IC 3) 4.6 (P), 3 (S) 16.8 (P), 3.6 (S) 0.373 (P), 1.744 (S) 4.1

a For multi-mode initial conditions P indicates primary mode and S secondary mode.

in R-M flows because it is directly related to the amount of vorticity generated on the
interface by the passage of the shock wave [52,60].

The experimental initial condition parameters are shown in Table 1. Of these three
configurations, IC 1 and IC 2 are single mode initial conditions having the same initial
amplitude (δ0) but different initial wavelength (λ0), and IC 3 is a multi-mode initial con-
dition having two distinct modes. A mathematical representation of the single mode initial
conditions can be given using the formula given in [14]. This formula was chosen owing
to its simplicity and ease of use for analytical modeling of initial conditions. Based on this,
the concentration profile for IC 1 can be written as follows:

I1 = A1(1 + B1 cos κ1y)

1 + B1
exp−x2α2

1/(1+β1 cos κ1y)2
, (5)

where A1 = 0.63 is the concentration intensity, κ1 = 1744 m−1 is the wavenumber, B1 =
0.2, α1 = 836, β1 = −0.04 are empirical initial condition parameters, and x and y are the
streamwise and spanwise direction, respectively. Similarly, IC 2 can be written as

I2 = A2(1 + B2 cos κ2y)

1 + B2
exp−x2α2

2/(1+β2 cos κ2y)2
, (6)

where A2 = 0.52, is the concentration intensity, κ2 = 872 m−1 is the wavenumber, B2 =
0.7, α2 = 836, β2 = −0.04 are empirical initial condition parameters. For the multi-mode
initial conditions, the following modified expression was derived empirically:

I3 = 1 −
[

cos

(
A3(1 + BP 3 cos(κP 3yP − 735.0))

1 + BP 3
exp−x2

P α2
P 3/(1+βP 3 cos(κP 3yP −735.0))2

)

+ cos

(
A3(1 + BS3 cos(κS3yS − 129.7))

1 + BS3
exp−x2

Sα2
S3/(1+βS3 cos(κS3yS−129.7))2

)

+ cos

(
A3(1 + BS3 cos(κS3yS + 400.13))

1 + BS3
exp−x2

Sα2
S3/(1+βS3 cos(κS3yS+400.13))2

)
,

where A3 = 1 is an empirical parameter, κP 3 = 373.8 m−1 is the primary wavenumber,
BP 3 = 2.0, αP 3 = 512, βP 3 = −0.04 are empirical parameters for the primary mode, and
κS3 = 1744 m−1 is the secondary wavenumber, BS3 = 2.2, αS3 = 836, βS3 = −0.04 are
empirical parameters for the secondary mode.
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Figure 3. Initial condition concentration contour plots: (a) single mode short wavelength initial
condition (IC 1), (b) single mode long wavelength initial condition (IC 2), and (c) multi-mode initial
condition (IC 3). The intensity bar shows the volume fraction of SF6.

A contour plot of the three different experimental initial conditions taken at a plane
z = 20 mm below the nozzle exit is shown in Figure 3. These images were obtained after
correcting for laser intensity variations in the spanwise (y) direction and subtracting the
background noise present in the experiments. The peak concentration (in terms of volume
fraction) of SF6 at the measurement location is ≈60% ± 5% along with ≈20% ± 5%
of acetone and ≈20% ± 5% of air. The vertical velocity of the falling gas curtain was
measured using PIV (for these measurements the PIV laser sheet was reoriented vertically).
The maximum value of vertical velocity of the flow is Uz ≈ 1.0 m.s−1 at the measurement
plane [44]. Very little variation in the maximum value of vertical velocity was found
between the top and bottom of the falling gas curtain. The profile of Uz(x) changed from
Gaussian at z = 0 mm to a flatter profile at z = 65 mm.

The power spectral density (PSD) of the concentration field from a single initial con-
dition realization at t = 0 µs for the three different initial condition in Table 1 are shown
in Figure 4. The power spectrum was taken along a line in the spanwise (y) direction at a
streamwise location (x) corresponding to the center of mass of the curtain. The PSD from
multiple experiments were compared and the spectra are reproducible over many length
scales. For clarity, the PSD plot shown in Figure 4 is from a single realization. The primary
wavelength, λ0 for each of the three cases is clearly seen, with small-scale noise accom-
panying the dominant mode(s). The small-scale fluctuations in the form of random noise
present in the laboratory experiments are captured using the power spectra and are a good
reference for the amount and magnitude of noise (both long wavelength and short wave-
length noise) needed for accurate computational modeling of the initial conditions. This
noise is mostly attributed to the random fluctuations present in our experiments, making the
initial conditions slightly asymmetric, and it should be modeled for accurate comparisons
with experimental results. Beyond κ = 50 mm−1, we are unable to distinguish real initial
conditions fluctuations from experimental noise.
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Figure 4. Power spectra of the concentration fields for three different initial condition configurations:
(a) single mode short wavelength (IC 1), (b) single mode long wavelength (IC 2), and (c) multi-mode
(IC 3). The dominant wavelength is evidenced by the spectral peak.

3. Results and discussion

For three different initial condition configurations, we present the bulk quantities of the flow
(i.e., amplitude of the evolving interface) and smaller scale flow features (i.e., velocity and
density fluctuations, turbulent kinetic energy, and Reynolds number) to better understand
the mixing evolution.

3.1. Evolution and growth of R-M instability

For the three different initial conditions in Table 1, Figure 5 shows the time evolution of the
density field from t = 0 µs (shock impact time). The concentration of heavy gas (SF6) is
shown on a gray scale, with black regions indicating pure light gas (air). These images are
not calibrated, hence the brightness is not indicative of the amount of mixing. The last time
shown for each initial condition in Figure 5 is the last accessible time in our fixed-length
test section. A visual inspection of the evolving density fields reveals differences in the
mixing that are associated with the different initial conditions. For the single-mode short
wavelength initial conditions (IC 1), the vortex concentration is high and the value of the
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Figure 5. Time evolution of density fields for three different initial conditions. Far left: single mode
short wavelength initial condition (IC 1); center: single mode long wavelength initial condition (IC
2); and far right: multi-mode initial condition (IC 3). White indicates SF6, and black indicates air.
The time t = 0 µs corresponds to the initial condition. In all the sets of images, t is the absolute time,
and t∗ = t∗

δ̇0
is the normalized time based on the initial linear growth.

dimensionless parameter κ0δ0 is the highest (see Table 1). The interface initially grows
independently until the modes start to interact at about t ≈ 1100 µs, as seen in Figure 5,
thus leading to a more mixed state. For the single-mode long wavelength initial conditions
(IC 2), the vortex concentration is less than IC 2 and the value of κ0δ0 is the lowest, so the
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μ

δ
δ

Figure 6. Amplitude of the mixing layer (δ − δ0) with time (t). Initially, for a very short time, the
amplitude appears to increases linearly with time. At late times, due to mode coupling and competition,
the growth is nonlinear. In all the following figures, IC 1 denotes short wavelength initial condition,
IC 2 denotes long wavelength initial condition, and IC 3 denotes multi-mode initial condition. The
primary and secondary modes for the multi-mode initial condition are denoted by IC 3P and IC 3S,
respectively.

modes grow independently of each other for a much longer time (t >1365 µs). At later
times, there is modal competition, as some of these modes start to outgrow others due to
vortex induction, where the smaller modes are engulfed, leading to a more mixed state.
Similar mixing mechanisms have also been observed for R-T instability [56]. For the case
of multi-mode initial conditions (IC 3), we have a combination of a low-wavenumber large-
amplitude (primary dominant) mode, and a high-wavenumber, small-amplitude (secondary)
mode. The interaction between these two modes forces the secondary mode to merge quickly
when compared to the IC 1 case. In contrast, the dominant mode grows independently (both
in x and y dimensions), thus retaining the shape (and memory) of initial conditions until the
latest observed time. In all three experiments, the flow evolves from primarily large-scale
features to the much smaller scales associated with turbulence and mixing transition.

The evolution of the amplitude of the mixing layer (δ) with time is a widely used metric
for R-M instability growth [e.g., 17,18,36]. We define the amplitude of the mixing layer
as the total width of the interface corresponding to the difference between the upstream
and downstream edges of the curtain where the SF6 volume fraction reaches ≈5% of its
maximum value. The δ is measured over three perturbation wavelength from the center of
the image, at the same span-wise location for each time. It is a measure of the nonlinear
growth of the largest scales of mixing present in the flow and also reveals some differences
in the nature of the mixing. Figure 6 shows a plot of (δ − δ0) with time for the three different
initial condition configurations. For consistency, the initial amplitude of the mixing layer
(δ0) at time t = 0 is subtracted from the actual amplitude of the interface, δ, for each initial
condition. For the multi-mode case (IC 3), the rms value of initial amplitude was used.
Based on width measurements from several realizations, and after accounting for potential
shot-to-shot variations in the illumination intensity (which directly affects the width for
a given fixed threshold of pixel intensity), it is estimated that the widths in the present
measurements are accurate to within ±5%. For a very short period the amplitude appears
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Δ κ Δ

κ
0
(δ

−
δ 0

)

Figure 7. Normalized amplitude versus time normalized based on the advection velocity of the fluid
layer does not show self-similarity for the three initial condition configurations, thus rendering this
scaling not useful for initial condition studies.

to grow linearly with time (until t ≈ 95 µs). Later, the nonlinear effects emerge resulting in
an exponential growth of the mixing layer that reaches a plateau. For the two single-mode
cases, at time t ≈ 1100 µs, a secondary jump in the mixing layer amplitude is seen that
may be attributed to the nonlinear mode coupling and modal competition that play an
important role in increasing the amplitude growth. Figure 6 also shows that the growth rate
of (δ − δ0) for the single-mode long wavelength case (IC 2) is higher than the single-mode
short wavelength case (IC 1). This observation is consistent those reported in the study by
[52] and could be attributed to the fact that κ0δ0 
 1. For multi-mode initial conditions,
the growth rate of δ is higher than the two single-mode cases because the primary and
secondary modes start to interact at a much earlier time.

To parameterize the growth of the mixing layer, the amplitude (δ − δ0) was non-
dimensionalized with the initial wavenumber for each case, δ∗ = κ0(δ − δ0). The time,
t , was non-dimensionalzed in two different ways. The first one is based on the advection
velocity (�U ) of the flow, from Equation (1), resulting in t∗�U = κ0A�Ut . The second
scaling is based on the initial linear growth rate (δ̇0), and was first proposed by [58]. The
value of δ̇0 is obtained by determining the slope of the best fit line that passes through
the linear portions of growth curves shown in Figure 6, and the resultant scaling is t∗

δ̇0
=

κ0Aδ̇0t . The non-dimensional amplitude of the mixing layer (δ∗) is plotted against these
two non-dimensional times, t∗�U and t∗

δ̇0
, as shown in Figures 7 and 8. With the t∗�U scaling

of Figure 7, we are unable to collapse the growth of the mixing layer. On the other hand,
Figure 8 shows a self-similar growth for the two single-mode initial conditions (IC 1 and
IC 2) until non-dimensional time t∗

δ̇0
≈ 12, with the t∗

δ̇0
scaling. This indicates that this time

normalization might be useful for single mode initial conditions. The multi-mode initial
conditions have a higher growth rate, confirming our visual observations of Figure 5 that
modal interactions occur faster in the multi-modal configuration. The growth of the ampli-
tude of the mixing layer for the two single mode experiments can be modeled as ∼ t0.67

(shown by semi-dotted line in Figure 8). This confirms the modeling used previously by
[18] and others. From these experiments, we determine that while the single-mode initial
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t∗
δ̇0

=κ0Aδ̇0t

κ
0
(δ

−
δ 0

)

Figure 8. Normalized amplitude versus time normalized with the initial linear growth rate value,
first proposed and used by [58]. Such a non-dimensionalization works for the single mode initial
conditions, but not for the multi-mode case (IC 3). The t0.67 used by [18] is a good fit for the
amplitude growth rate for the single mode initial conditions.

conditions follow growth rates similar to those proposed earlier, the multi-mode initial
conditions grow at a much faster rate. Growth rate models must account for differences
in initial conditions if they are to capture the bulk of the fluid mixing. These models do
not capture molecular mixing differences, because those occur at scales smaller than the
amplitude of the mixing layer.

3.2. Turbulence statistics

If we are to understand mixing differences from different initial conditions, we must look
at all of the energy-containing scales in the flow. Turbulence modeling has long assumed
a self-similarity of turbulence quantities to simplify the mathematics of the modeling.
Kolmogorov [61] argued that not only does the directional information gets lost as the
energy passes down the cascade, but that all information about the geometry of the eddies
also gets lost. As a result of these assumptions, the statistics of the small-scale motions
are universal in the sense that they are similar in every high Reynolds number turbulent
flow, independent of the mean flow field and the boundary conditions. Turbulence and
mixing induced by shock-driven hydrodynamic instabilities have a few distinct features
in comparison to classical turbulent flows. Anisotropy and inhomogeneities arise due to
various factors ranging from initial condition variations, the presence of shocks, material
discontinuities, and associated baroclinic effects. Detailed turbulence measurements are
needed to clearly understand these differences in order to better model such flows. From an
experimental point of view, this requires collecting data on the time evolution of velocity and
density statistics and calculating various turbulence quantities from them. In this section, we
will present some of the important experimentally measurable quantities that impact mixing
in variable density fluid flows. The turbulence quantities presented below were calculated
from an instantaneous realization and not ensemble averaged, as would normally be done
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μ

Figure 9. Turbulent kinetic energy based on 2D measurements showing the dissipation of energy
from large scales to smaller scale mixing.

in experimental measurements. This averaging is consistent with statistics calculated from
large eddy simulations, and we are unable to perform the approximately one thousand
experiments needed to have converged, ensemble-averaged statistics.

3.2.1. Turbulent kinetic energy

The 2D turbulent kinetic energy K is defined as the root mean square (rms) of the velocity
fluctuations in two dimensions:

K12 = 1

2

(
u

′2
1 + u

′2
2

)
, (7)

where u
′
1 is the velocity fluctuations in the direction of the shock wave or streamwise

direction (x) and u
′
2 is the velocity fluctuations in the shock normal or spanwise direction

(y). Before calculating the turbulent kinetic energy, velocity fluctuations present in the flow
with the 2D (x-y plane) PIV data at a fixed time are measured as follows:

u
′
i(x, y) = ui(x, y) − ui(x)

y
, (8)

u
′2
i = u

′
i(x, y)2

yx

, (9)

where i = 1,2 represents components in the x, and y directions, respectively. It should be
noted that ui(x)

y = ui(x, y)
y
(x). From the experimental velocity field data, the 2D turbulent

kinetic energy (K12) was calculated for the three initial condition configurations over time
and is shown in Figure 9. For all three cases, the turbulent kinetic energy increases initially
(due to the baroclinic vorticity depositing energy into the flow) and starts to decrease
indicating the energy dissipation process and transfer of energy from large scales to smaller
scales. Our experimental measurements are consistent to within 5% of the turbulent kinetic
energy results of [62] where they numerically simulated the gas curtain problem. The small
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t∗
δ̇0

=κ0Aδ̇0t

K
1
2

δ̇
0
2

Figure 10. The normalized 2D Turbulent kinetic energy plotted against normalized time reaches an
asymptotic value of turbulent kinetic energy after t∗

δ̇0
≈ 12.

difference could be attributed to the fact that the numerical simulations include 3D effects.
At late times, the differences in the 2D and 3D turbulent kinetic energy values in experiments
and simulation is ≈10–15%, owing to the effect of the third velocity component. Also, in
a recent work by [63], it was reported that seeding the heavy gas only versus seeding
the whole flow does not have a large impact on turbulent kinetic energy results when it
is calculated as shown in Equation (7); hence, our measurements are independent of the
particle seeding method.

In order to test initial condition dependence, the 2D turbulent kinetic energy was nor-
malized by dividing K12 by square of the initial linear growth rate (δ̇0) for the three different
experimental runs. In general, one can use the mean convection velocity of the flow, �U ,
to normalize the turbulent kinetic energy, K12, but �U is the same for each experiment
and does not account for the initial conditions of the interfaces. From Figure 8, the nor-
malization based on δ̇0 shows self-similarity for different single-mode initial condition
configurations, so we scale K12 with δ̇0. The normalized turbulent kinetic energy is plotted
against normalized time in Figure 10. The important observation from this figure is that
the turbulent kinetic energy for all three cases reaches an asymptotic value after t∗

δ̇0
≈ 12,

indicating self-similar value of K at late times for different initial condition configurations.
Although K12 decays to an asymptotic value for all three experiments, we see differences
in the large-scale mixing after t∗ = 12 for all the three cases in Figure 5. This suggests
that homogeneity is obtained at small scales, but the large scale turbulence may still be
asymmetric and anisotropic. Also, the density fields in Figure 5 indicate late-time memory
of the initial conditions. This was also confirmed from the late-time density power spectra
shown in Figure 11. When comparing the late time spectra with the initial condition spectra
for the three different initial conditions (Figure 4), we still see an imprint of the primary
wavenumber mode, indicating persistence of the initial condition modes into late times
when there is significant small-scale mixing. Figure 11 shows that the inertial ranges for
the spectra have increased, indicating an energy cascade and transition to a more mixed and
turbulent state.
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κ= 2π
λ
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)

κ= 2π
λ
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)

Figure 11. The late-time power spectra of the concentration fields at t ≈ 2000 µs for three different
initial condition configuration: (a) single mode short wavelength initial conditions (IC 1), (b) single
mode long wavelength initial condition (IC 2), and (c) multi-mode initial conditions (IC 3). The
dominant wavelength is preserved in each case at late times indicating initial condition dependence
on R-M mixing. The dotted line represents κ−5/3 slope, for reference.

3.2.2. Turbulent Reynolds number

In turbulence, the range of flow scales increases continuously as the energy spectrum
broadens. Different Reynolds numbers can be defined to measure large scale and small
scale flow features. The most commonly used is the bulk Reynolds number, defined as
Reδ = δδ̇

ν
(where δ̇ is the rate of growth of the mixing layer and ν is the kinematic viscosity

of the fluid), that is a measure of the large scales [46]. Although δ and δ̇ are relatively easy
to measure in experiments, the Reδ does not accurately capture the inertial and viscous
force differences that govern mixing in R-M flows. We propose using Reynolds numbers
that are more relevant to understanding turbulent mixing. The turbulent Reynolds number

based on 2D turbulent kinetic energy defined as ReK =
√

K12δ

ν
represents the magnitude of

turbulent transport versus viscous transport. It is important in measuring the small-scale
flow features and understanding energy contained in the smaller scales. In turbulent flows,
the Taylor microscale is the largest length scale at which fluid viscosity significantly affects
the dynamics of turbulent eddies in the flow [64]. Thus, a Taylor microscale Reynolds

number is often used and can be defined using the isotropic formula Reλ =
√

20
3 ReK .
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μ

Figure 12. Turbulent Reynolds number for three different initial conditions.

Here, we will present measurements of turbulent Reynolds number (ReK ) and Taylor
Reynolds number (Reλ). The plot of evolution of ReK for different initial conditions is
shown in Figure 12. The turbulent Reynolds number increases with time indicating that the
fluid mixing layer is turbulent. The evolution of self-similar turbulent Reynolds number
denoted as ReK (δ0/λ0)−1.5 plotted against t∗

δ̇0
is shown in Figure 13. From the gradient

diffusion hypothesis [see 46], for asymptotic self-similarity it is necessary that ReK grows
as a function of the mixing layer width, δ0/λ0, and reaches a steady asymptotic state, which
is not seen from Figure 13. This points to the fact that there is a mismatch between the
lower-order terms in the self-similar formulae for the kinetic energy and viscous dissipation.
Thus even though the amplitude of the mixing layer and the turbulent kinetic energy show
asymptotic self-similarity, the approach to a complete self-similarity occurs much later
than we observe in our experiments. The Taylor microscale Reynolds number also steadily
increases starting from zero and reaching a maximum value of Reλ = 165 for IC 1,

t∗
δ̇0

=κ0Aδ̇0t

R
e K

(
δ λ
0
)−

1
.5

Figure 13. Time variation of self-similar Reynolds number.
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Figure 14. Probability density functions of velocity fluctuations for single mode long wavelength
IC 2 configuration. t(t∗

δ̇0
) = 315 µs (3.62) (◦: experimental pdf, solid line: least square Gaussian fit).

t(t∗
δ̇0

) = 965 µs (11.08) (×: experimental pdf, dotted line: least square Gaussian fit). t(t∗
δ̇0

) = 1865 µs
(21.42) (+: experimental pdf, dash line: least square Gaussian fit given by Equation (10)).

Reλ = 316 for IC 2, and Reλ = 290 for IC 3, indicating moderate to high turbulence inside
the mixing layer.

3.2.3. Probability density function and rms of velocity fluctuations

Turbulence is characterized by the intermittent generation of very large gradients and
velocity differences, and the probability density functions of these parameters gives us an
indication of the intermittency present in the flow. Intermittency has several meanings, but
the most apt from a turbulence perspective is the tendency of the probability distributions
of turbulent quantities to develop long tails along with non-Gaussian distributions [65].
It has also been observed that the extreme tails become stronger as the Reynolds number
increases.

The probability density functions (pdf’s) for our experiments were calculated by plotting
the area histograms of the turbulence quantities. A least-squares Gaussian distribution, given
as

P (x) = 1√
(2π )σ

exp

(−(x − μ)2

2σ 2

)
(10)

was used to measure the deviation of the experimental pdf from a Gaussian distribution.
The pdf’s of velocity fluctuations, u

′
1 and u2

′, for the two initial condition configurations
(IC 2 and IC 3) at early and late times are shown in Figures 14 and 15. The pdf’s show
that the tail of the distribution becomes narrower with increasing time, corresponding to
increasing turbulent Reynolds number (ReK ) showing that the intermittency in the flow is
reducing and the turbulence is decaying. The fit given by Equation (10) also shows that the
distribution becomes more Gaussian with increasing time.

The rms of velocity fluctuations, related to the variance, is given as

σui
(x) =

√
u

′2
i (x, y)

y

, (11)
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Figure 15. Probability density functions of velocity fluctuations for multi-mode IC 3 configuration.
t(t∗

δ̇0
) = 465 µs (3.28) (◦: experimental pdf, solid line: least square Gaussian fit). t(t∗

δ̇0
) = 965 µs

(6.49) (×: experimental pdf, dotted line: least square Gaussian fit). t(t∗
δ̇0

) = 1815 µs (12.80)
(+: experimental pdf, dash line: least square Gaussian fit given by Equation (10)).

where i = 1,2, represents the rms in streamwise (x) direction and spanwise (y) directions.
The rms of the velocity fluctuations in both the directions across the fluid layer at different
times is shown for two initial condition cases (IC 2 and IC 3) in Figures 16 and 17. For
homogenous and isotropic turbulence, the rms of the velocity fluctuations should be the
same in all the directions. From the figures, the rms of velocity fluctuations in the shock
direction (u

′
1) is much higher than that in the spanwise (u

′
2) direction indicating more

energy is initially present in the shock direction (x). Also, the shape of the two curves are
different with strong aperiodicity in shock normal direction (y). With time the energy is
distributed to different scales present in the flow, and the rms of u

′
1 and u

′
2 are approaching

a homogeneous state with similar profiles and values everywhere across the fluid layer. The
rms of the velocity fluctuations when measured across the mixing layer shows a strong
anisotropy in the shock direction. This indicates turbulence asymmetry in the flow, and it
was also observed in the studies by [37] and [44].

Figure 16. The rms of velocity fluctuations, in the shock direction σu1 (solid line), and shock normal
direction σu2 (dashed line) for single mode long wavelength IC 2 configuration. The corresponding
non-dimensional time is t∗

δ̇0
= 3.62 (t = 315 µs), 12.81 (t = 1115 µs), and 22.57 (t = 1965 µs).
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Figure 17. The rms of velocity fluctuations, in the shock direction σu1 (solid line), and shock normal
direction σu2 (dashed line) for multi-mode IC 3 configuration. The corresponding non-dimensional
time is t∗

δ̇0
= 1.87 (t = 265 µs), 6.45 (t = 915 µs), and 13.51 (t = 1915 µs).

3.2.4. Density of the mixing layer

Recent numerical results for variable density flows have shown that, at very low Atwood
numbers, a fluid mixing layer remains symmetric around the center of mass. As the Atwood
number is increased, the flow becomes more asymmetric and non-Boussinesq [46]. The
present high Atwood number R-M experiments can provide a test for this behavior through
use of the density maps obtained from the quantitative PLIF measurements.

The mean density (averaged in the spanwise, y, direction) for the case of the single-
mode long wavelength initial condition (IC 2) is shown in Figure 18. The density initially
increases after shock compression and then decreases as the fluids mix together. Before
the shock wave hits the curtain, the initial density profile is Gaussian. After interaction
with the shock, the density profile becomes discontinuous showing multiple peaks due to
distinct SF6 and air pockets. When the fluid layer mixes, the density profile becomes more
uniform across the mixing layer. With time, the mixing layer with respect to the center of

ρ

μ
μ
μ

μ

Figure 18. Density profile at different times (shown in the legend) across the mixing layer for IC 2.
The asymmetric behavior of the mixing layer from the center of mass (x = 0) is seen from this plot.
The shock wave moves from left to right.
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mass starts to show asymmetric behavior that becomes pronounced at late times. Initially,
at t = 115 µs, the density profile is asymmetric with more mass located in the upstream
side (with respect to the motion of shock wave) of the center of mass. At late times, e.g.,
t = 615 µs, more mass is found on the downstream side, since the fluid is being advected
in that direction. The mixing layer is asymmetric and moderately non-Boussinesq.

3.2.5. Density-specific volume correlation

In variable density flows, we use the parameter, b, the density-specific volume correlation, to
characterize mixedness. During the mixing process, b plays an important role in mediating
the mass transport by appearing as an unclosed term in the evolution equation for mass
transport [66]. The parameter b is defined as the product of the density and volume fraction
fluctuations of the fluids present in the flow and can be mathematically represented as

b = −ρ
′
(

1

ρ

)′

(or) b = ρ

(
1

ρ

)
− 1. (12)

By definition, b is non-negative and equals zero when two fluids are fully mixed or for
homogeneous fluids. In shock-accelerated R-M flows, initially, the density fluctuations are
small, but at later times b is an important metric that can be used to quantify the amount of
mixing. A high value of b indicates regions of unmixed fluid and a low value of b indicates
a well mixed state. Using the 2D density field data at a given time, we calculate b in the
following way:

ρ
′
(x, y) = ρ(x, y) − ρ(x)

y
, (13)(

1

ρ(x, y)

)′

= 1

ρ(x, y)
−
(

1

ρ(x)

y
)

, (14)

b(x, y) = −ρ
′
(x, y)

(
1

ρ(x, y)

)′

, (15)

b(x) = −ρ
′ (x, y)

(
1

ρ(x, y)

)′y

, (16)

b(x) = ρ(x)
y

(
1

ρ(x)

y
)

− 1, (17)

b = b(x), (18)

b∗ = b

b0

. (19)

In the above set of equations, ρ(x, y) is the 2D density field, the inverse of density field
is the corresponding volume fraction field, and b(x, y) is the 2D density-specific volume
correlation field. It should be noted that ρ(x)

y = ρ(x, y)
y
(x), and similar expression can

be written for the volume fraction field. The terms ρ(x), 1
ρ(x) , b(x) represent the density,

volume fraction, and density-specific volume correlation across the fluid interface in the
shock direction, b0 is the mean value of b at time t = 0. The evolution of the mean value
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t (μs)

b̄

Figure 19. Evolution of mean density-specific volume correlation, b̄.

of the density-specific volume correlation, b, for the three initial condition configurations
is shown in Figure 19. For all three cases, b increases after the incident shock wave passes
through the interface and then starts to decrease as the two fluids mix. The value of b at late
times is lower for the highest value of κ0δ0 (IC 1), indicating that the fluid interface is more
uniformly mixed. A more complex/corrugated interface leads to a more well-mixed state,
consistent with the results of [52]. The normalized value of b, denoted as b∗ and defined
in Equation (19), is plotted versus t∗

δ̇0
in Figure 20. For all IC cases, b∗ reaches the same

asymptotic value of b∗ ≈ 3, after t∗
δ̇0

≥ 12. This asymptotic behavior is consistent with the
observed behavior of the 2D turbulent kinetic energy (Figure 10).

t∗
δ̇0

=κ0Aδ̇0t

b̄ b̄
0

Figure 20. Plot of normalized density-specific volume correlation versus normalized time reveals
asymptotic behavior of b after t∗

δ̇0
≈ 12.
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The late-time power spectra of the concentration fields indicate a mixing transition from
large scales to smaller scales. The values of 2D turbulent kinetic energy, K12, and density-
specific volume correlation, b, the two unclosed terms the turbulence model [66], for the
three different initial condition configurations, suggest that the sub-grid scale turbulence
models may be appropriately applied after this normalized time to capture mixing transitions
to smaller scales. Although the small scales present in the flow reach a homogeneous state
of mixing (seen from the two dimensional K12 and b values), the large scale turbulence is
asymmetric and the large scale flow features preserve memory of the initial condition modes.
The probability density function of the velocity field shows that the turbulence is decaying
with time. The non-Boussinesq and asymmetric nature of turbulence is also confirmed from
the density and velocity fields. These results give us an indication that shock-driven flows
are time- and initial condition dependent and should be modeled differently than classical
turbulence. The results from this work will be useful for development and validation of
predictive turbulence closure models [67,68] for variable density flows. More work in the
future is necessary to confirm the exact state of mixing and turbulence in unsteady variable
density flows.

4. Conclusions

A series of experiments were conducted to test the dependence of initial amplitude (δ0) and
wavenumber (κ0) of perturbations on turbulence and mixing in a shock-accelerated flow
with an unstable Richtmyer–Meshkov (R-M) fluid layer. Single and multi-mode membrane-
free initial conditions in the form of a gas curtain having a light-heavy-light configuration
(air-SF6-air) and an Atwood number of A = 0.57 were used in our experiments and were
driven by a planar shock wave with Mach number M = 1.21. Various statistics were
calculated from these data, and the following important conclusions are made from this
study.

1. Time series of the density fields of the R-M instability (shown in Figure 5) for three
different initial condition configurations show some qualitative differences in the nature
of mixing. Modal merging and competition are two important phenomena aiding mixing
in R-M flows. The numerical hypothesis that “memory of initial conditions can be
retained in the flow” was corroborated qualitatively and also quantitatively using the
power spectra of the density fields.

2. Two different types of scaling were used to non-dimensionalize the time, t ; one using the
advection velocity of the flow, �U , and other using the linear growth rate, δ̇0 (proposed
first by [58]). It was found that t scaled with δ̇0, henceforth referred to as normalized
time, t∗

δ̇0
, gives a satisfactory collapse for the single mode initial condition (IC 1 and IC

2) growth rates, but not for the multi-mode case.

3. The 2D turbulent kinetic energy, K12, normalized with δ̇0
2
, versus normalized time, t∗

δ̇0
,

reaches an asymptotic value after t∗
δ̇0

≈ 12 for all three initial condition cases.
4. The turbulent Reynolds number and Taylor microscale Reynolds number indicate that

the fluid layer is moderately turbulent to highly turbulent for different initial condition
configurations. Moreover the self-similar Reynolds number plotted vs t∗

δ̇0
does not show

a self-similar state, indicating that the fluid layer is non-homogeneous and the gradient
diffusion hypothesis is not satisfied. The asymmetric behavior of the mixing layer is
also seen from the rms of velocity fluctuations and density plots, suggesting turbulence
asymmetry and non-Boussinesq behavior.
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5. The density-specific volume correlation, b, shows more mixing for higher values of
κ0δ0. Normalized b plotted versus normalized time reaches an asymptotic value after
t∗
δ̇0

≈ 12 for all three initial condition cases, similar to that of the turbulent kinetic energy.
6. The memory of the initial conditions is retained in the bulk of the flow. A few statistics

(such as K12, b, rms of velocity fluctuations), that govern the smaller scale mixing in the
flow reach an asymptotic state when scaled with parameters that capture the wavelength
and amplitude characteristics of the initial conditions.

These results can help to guide the timing of the initialization of turbulence models
(such as BHR turbulence model, [66]) as well as initial values for transport model terms in
simulations of unsteady shock-driven and variable density flows.
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Appendix A. Error analysis

In this section, we present a brief analysis of experimental uncertainties and measurement
errors associated with various turbulence quantities. In our experiments, the main sources
of error are from laser intensity fluctuation, that directly affect the amplitude of the mixing
layer and density measurements, the PIV processing method (e.g., optical resolution, size
of interrogation window, and correlation algorithm) that affects the velocity statistics,
sampling errors, and other random errors. The error and accuracy of the results presented
in this paper were quantified to the extent possible.

First, we focus on the errors associated with PLIF diagnostic. The amplitude of mixing
layer, δ, is directly obtained from the fluorescence signal, which is calculated from several
realizations, after accounting for laser variations in the illumination intensity. The mea-
surements of δ are estimated to be accurate to within ±5% based on the pixel intensity.
Another quantity measured from PLIF is the density of the mixing layer, and is obtained
using the mass conservation method [see 32]. This method is based on the fact that the
mass of the fluorescent fluid (SF6) is conserved inside a control volume before and after
the shock, and any change in the signal is associated with the entrainment and mixing of
air. Therefore, by measuring the total mass of the fluorescent fluid in the initial condition
before first shock using the calibration test cell, one can calculate a scaling coefficient and
use that to calculate the density of the mixing layer. The mean and fluctuating density mea-
surements (and hence density-specific volume correlation, b) have higher statistical error,
approximately ±10–12%, due to the effects of changing laser sheet thickness that directly
affects the mass calculations. Care was taken to make sure that the laser sheet thickness
variation was minimal along the streamwise (x) direction.

Second, we discuss errors associated with PIV diagnostic for velocity measurements.
The time response of tracer particles advected in the turbulent flow produces an error. As
per [69], the estimate for the error associated with the turbulent motion of the fluid (rms
particle lag, δurms) can be written as follows:

δurms ≈ u2

λT

∣∣∣∣�t

2
− 〈τp〉

∣∣∣∣ , (A1)

where λT is the Taylor microscale, �t is the time difference between two images and τp is
the time response of the particles. Based on λT = 0.015 cm, �t = 2 µs, and τp = 0.1 µs,
we obtain an error of 0.75 m·s−1. The sub pixel error estimate is 0.1 pixel which translates
to an error of 0.8 m·s−1 in the velocity fluctuation, and it is of the same order of magnitude
as the error due to turbulent drag. It should be noted that the PIV vector resolution of 256
µm is approximately two times higher than the λT value, indicating that some statistical
error is present as the flow is transitioning from large scales to smaller scales. Based on
these estimates, the measurements of velocity fluctuations are accurate to within ±5%.
Some additional details on error associated with these turbulence statistics in the presence
of reshock can be found in another paper published by our group [see 37].
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